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Numerical methods are used to investigate the motion of a horizontal vortex pair 
through a stably stratified atmosphere. The vortices carry with them a mass of 
fluid whose density differs from that of the air through which i t  descends, and the 
surface of this accompanying fluid becomes a vortex sheet, which is modelled by 
a set of discrete line vortices. 

It is shown that, a t  first, the vortex pair slows down with the shape of the 
envelope of the accompanying fluid remaining constant. Later, vorticity con- 
centrates at the rear, initiating detrainment and causing a downward acceleration 
of the vortex pair. Throughout the motion, the vortices approach each other. 

1. Introduction 
Tlie trailing vortices formed behind an aircraft descend vertically through the 

atmosphere, carrying with them a mass of fluid whose density, neglecting the 
engine exhaust, is that of the air through which the aircraft is flying. As this mass 
of fluid descends, it will, in general, encounter fluid of different density and there- 
fore buoyancy forces will affect it's motion. To study the effect of buoyancy forces 
on the descent, the more tractable situation of the unsteady two-dimensional 
motion of a pair of rectilinear line vortices is considered, where the time is 
proportional to the distance behind the aircraft. 

Now in a uniform atmosphere, the descent velocity of the vortex pair is given by 

V = K / ~ T R ,  ( 1 . 1 )  

where K and - K are the circulations about the right-hand and left-hand vortices, 
respectively, and 2R is their separation. Fluid within the contour C is carried 
along with the vortices, where the shape of C' is given by (Lamb 1932, p. 221) 

Here x and y are co-ordinates with respect to axes moving with the vort,ices and 
with origin midway between them, Ox being horizontal. The curve C plays a 
crucial role in the theories to  be described because in a st,ratified atmosphere it 
is t,he boundary between fluids of different densities. Of course, as the motion 
proceeds, C will be distorted from the form (1.2) by density effects, and one object 
of this study is to find the modification to C. 
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Scorer & Davenport (1970) were the first to consider the motion of a vortex 
pair in a stratified atmosphere. They allowed for buoyancy effects by equating 
the rate of change of the impulse of the vortex pair to the total buoyancy force, 
neglecting the change in impulse due to vorticity generated baroclinically on the 
envelope C. They predicted an increase in the downward velocity of the vortex 
pair and a concomitant decrease in their separation. Clearly, then, fluid would 
have to be detrained from the upper surface of C. 

Saffman (1972) obtained an approximate solution to the problem by supposing 
that the shape of C and the distance between the vortices remain constant. He 
determined a velocity potential which satisfied the kinematic conditions a t  the 
boundary exactly, but satisfied the pressure condition a t  the boundary only 
approximately. The surface Cis a vortex sheet, representing the vorticity gener- 
ated baroclinically, and hence this effect is allowed for in Saffman’s work. With 
no detrainment, Saffman found that the vortex pair slowed down and eventually 
reversed its motion, subsequently oscillating between two levels. 

Both Saffman and Scorer & Davenport neglected viscosity and the vorticity 
generated baroclinically away from the envelope C, these two approximations 
being made in this paper also. The object of the work described here is to try to 
decide, by a numerical approach, which of these approximate theories is closer 
to  the truth. 

More recently, support for Scorer’s theory has been furnished by Crow (1974). 
He allowed for the baroclinic generation of vorticity on C in an approximate 
fashion and concluded that detrainment would have to occur. 

I n  $ 2 ,  a description of the physical model is given together with an account of 
how the equations governing the motion were written in a form accessible to  
numerical analysis. A check on the method of integration is described in $3,  and 
a discussion of the results obtained from numerical calculations follows in $4 .  

2. The motion of a pair of line vortices in a stratified atmosphere 

t,hrough an atmosphere with density stratification defined by 
The problem considered is that of a pair of line vortices descending vertically 

where po is the density a t  the fixed height Y = 0, the flight level of the aircraft, 
and RP < 1. The fluid moving with the vortex pair is supposed to be of constant 
density pc, where 

P c  = Po(1 - P W .  (2.2) 

Thus the density of the air moving with the pair need not be equal to that of the 
ambient atmosphere, to  allow for the effect of the engine exhaust. 

If a frame of axes (x, y) moving with and centred on the vortex pair is intro- 
cluced, as in $ 1, 

Y = y - I ( t ) ,  (2.3) 

where 

and V( t )  is the downward velocity of the vortex pair. 
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Bjerknes’ theorem states that 

dl? = j A , f . $  x V p . d A ’ ,  
(2.5) 

where r(t) is the circulation around the material circuit C’ enclosing the area A’. 
The fluid accelerations near C can be estimated from the solution without density 
differences. For the cases of interest, they prove to be much smaller than the 
gravitational acceleration, so that it is legitimate to employ the hydrostatic 
approximation, as did Scorer & Davenport (1970) and Saffman (1972). Then V p  
can be replaced by its static value and (2.5) becomes 

dt 

where g is the acceleration due to gravity. 
The integral in (2.6) is zero for any area A inside C ,  and if the baroclinic genera- 

tion of vorticity outside C is neglected, a second approximation made by Scorer 
& Davenport and by Saffman, it is seen that vorticity is created only on the 
envelope C. In  particular, it  is clear that the strengths of the two main vortices 
remain constant. Hence, as the motion proceeds, C becomes a vortex sheet. 

To discretize the problem, C is represented by a finite number 2 M  of fluid 
particles, whose initial spacing is uniform. As the motion proceeds, each fluid 
particle is made to become a point vortex whose instantaneous strength is deter- 
mined by Bjerknes’ theorem. Vortex lines are not material in a stratified fluid 
and so the discretization familiar in aerodynamics, where vortex sheets are 
replaced by point vortices of constant strength, is not useful here. The symmetry 
of the problem enables the motion on the right-hand side only to be followed. 

Suppose that I$ whose co-ordinates are (xi, yj), is the position of thejth vortex 
and let rj be its instantaneous strength. The objective of this analysis is to derive 
from the Boussinesq form of Bjerknes’ theorem an equation for dr , /d t .  If the 
vortices are closely spaced on C ,  the portion of C with end points q.-l and q.+l 
can be regarded as a straight line. Let Lj be the midpoint of P,-l q. and let Ri be 
the midpoint of 3. and apply Bjerknes’ theorem to a rectangle A j  whose sides 
are parallel to q. $.+, and whose ends pass through Lj and Ri. To calculate the 
integral (2.6), take new axes Ox‘ and Oy‘, where 0 is a t  q. and Ox‘ lies along 
4 q+l. Then, neglecting the variation of p parallel to q.-l qfl, 

P(Y7 = Pi  + (Pj - P J  H(Y’), 
where pj is the value of p at 4. Thus, 

where 0, is the inclination of the line q-l p3 above the horizontal. Performing 

where Si is the length of LjRj .  Finally, pj is obtained from (2.1)-(2.4) to give 
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The quantity Sj sin 19, is readily calculated in terms of the co-ordinates of the 
point vortices, so that (2.7) provides an equation for the rate of change of the 
strength of each vortex, given the configuration. Equations for the rate of change 
of t,he co-ordinates are obtained by calculating the velocity of any point vortex in 
terms of the positions and instantaneous strengths of the other vortices. Sym- 
met'ry is imposed, so that, to a point vortex of strength rj a t  (xi, yi) on the right- 
hand portion of C, there corresponds a vortex of strength - rj at  ( - xi, yj) on the 
left-hand portion. 

The resulting system of ordinary differential equations was integrated forwards 
in time and the positions of the main vortex pair, the location C of the density 
discontinuity and the distribution of baroclinically generated vorticity on C were 
deduced. Fourth-order Runge-Kutta integration was used. 

Both Scorer & Davenport and Saffman neglected the variat,ion in density 
along C, therefore in order to compare the numerical results wihh their theories, 
pj/pc was given the value 1 + p( 1 - pH)-'(H + I ( t ) ) .  However calculating pi using 
its true local value instead of the value at  the pair level had little effect on the 
results. 

3. Check on the method of integration 
To check the program and test its accuracy, i t  was used to predict a flow known 

analytically. If the motion starts from rest, the amplitude, in linear t,heory, of 
a sinusoidal wave 011 a horizontal interface between two fluids of different 
densities p1 > p2, with the heavier fluid uppermost, is proportional to cosh crt, 
where 

(3 .1)  

Here, k is the wavenumber of the disturbance, 0 is the acceleration due to gravity 
and t is the time measured from the instant a t  which the fluid is at  rest. 

Using the discrete-vortex approximation, &I point vortices of initial strength 
zero were placed along one wavelength of the initial disturbance and were allowed 
to increase in strength according t,o Bjerknes' theorem. The other waves were 
allowed for by remarking that, corresponding to the vortex of strength C, a t  
( x i ,  yj), there must be a vortex of strength a t  (xi k 2?~n/k,  yj) for n = 1 , 2 , 3 ,  ... . 
The contributionof all the vortices with a givenjat the i th vortex could be found 
analytically, as wasdone by Rosenliead (1931). Thus themotion of the M vortices 
mas followed by marching forward in time, as before. 

The results obtained are displayed in figure 1, where m, the magnification of 
the initial wave amplitude, is plotted against the non-dimensional time T = crt. 
The values of the initial amplitude and wavenumber used in the program were 
0.2 in and 0.1 m-1, respectively, and because the Boussinesq approximation is 
valid in the present situation only if (p1-p2)/(p1+p2) < 1, this ratio was given 
the value 
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FIGURE 1. Comparison between the results of the discrete vortex approximation and the 
analytical solution for the amplitude of a sinusoidal wave on the horizontal interface between 
two fluids of slightly different densities. -, cosh T. 

4. Results 
It was first necessary to determine the value of 2111, the number of fluid particles 

representing the vortex sheet, and the time step. 
The calculations were done with M = 30, 40, 50 and 98. The differences in the 

values obtained for the downward velocity and the vertical and horizontal dis- 
placements of the vortex pair proved to be extremely small, the largest discrep- 
ancy being less than 0.01 yo. Thus i t  was inferred that M = 30 gave a sufficiently 
good resolution of the flow for the above quantities to  be determined. However, 
the value 171 = 98 was used in some runs to enable the shape of G to be determined 
accurately. 

The time step usedwas 0.015 To,where To = 4nR21~ is the time required for the 
pair to descend EL distance equal to half their separation in the unstratified case. 
Calculations with shorter time steps produced the same results. 

Before considering the results themselves, i t  is helpful to  consider how they 
can depend on the imposed parameters. Crow (1974) has identified the dimension- 
less groups involved and (for the case H = 0) his results show that the descent 
velocity is 

(K/47rR) U ( N t ,  NT,,  ( 4 4 7 4 2  (gR3)-'), 
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FIGURE 2. Comparison of the numerical results with the theoretical results of Scorer t 
Davenport (1970) and Saffman (1972) for U .  O,/? = 10-5m-1; X ,/3 = 10-4mm1;0./1’ = 
In-1; +, /I = 5 x 10-3m-1; A,  /I = 10-am-’. 

where N = (g,8)4 is the Brunt-Vaisala frequency. Crow points out that in making 
the hydrostatic approximation one is treating ( ~ 1 4 7 7 ) ~  (gR3)-l as a small quantity, 
because this group is the ratio of the fluid accelerations ( ~ / 4 n ) ~ R - ~  caused by the 
vortex pair to that due to gravity, g. However, Ucannot depend on ( ~ / 4 n ) ~ ( g R ~ ) - ‘  
because ,8 and g are inextricably linked. In all the calculations, ~ / 4 n  had the value 
60 m2 s-l and R had the value 20 m, which are typical of large t’ransport aircraft. 
Thus the parameter ( ~ / 4 n ) ~  (gB3)-l had the value 0.046. H was given the value 
zero in the calculations to be described here. 

It may be noted a t  this point that Scorer & Davenport predict a descent 
velocity 

while Saffman predicts a descent velocity 

(K/47TR) cash (0-67 N t )  

( ~ / 4 n R )  COS (0 .67Nt) .  

Calculations were done with p = lop5, 10-3, 5 x and 10-2m-1. The 
range 10-5-10-4 m-1 is typical of the real atmosphere (Scorer & Davenport 
1970). 

The results for the descent velocity are shown in figure 2 with Scorer & Daven- 
port’s and Saffman’s result,s shown for comparison. It can be seen that Saffman’s 
prediction that the pair is decelerated is supported by the present results. 
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FIGURE 3. Comparison of the numerical results with the theoretical results of Scorer & 
Davenport (1970) and Saffman (1972) for 2. Symbols as in figure 2. 
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4. Distribution of vorticity on the right-hand portion of C determined 
discrete vortex approximation. y is defined by Crow (1974). 
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FIGURE 5 .  Comparison bet\%-een the numerical results and the theoretical results of 
Scorer & Davenport (1970) for 5’. Symbols as in figure 2. 

However, Saffman’s theory underestimates the descent velocity, which indeed 
eventually starts to increase. However, this eventual acceleration is not in 
agreeinelit with Scorer & Davenport’s predictions. 

A quantitative measure of the accuracy of Saffman’s theory can be obtained 
by seeking the time t,.,, a t  which U/U(Saffman) = 1-1 .  On dimensional grounds, 

tl.1 = T,f(NT,, (447v(sB3)-1), 

and for the value of ( ~ / 4 7 i ) ~  (qR3)-l used in the present calculations, it was fouricl 
that 

tl.l = 1.25 To(NTo)-+. (4.1) 
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FIGURE 6 .  The shape of the upper right-hand portion of C at various times. 

The results for the downward displacement are shown in figure 3, where 

2 = (47rNR/K) I@). 
Figure 4 shows the distribution of vorticity on C at  different times. Vorticity of 
sign opposite to that in the main vortex concentrates near the upper stagnation 
point as t becomes greater than To. I n  figure 5 the vortex separation S is shown 
as a function of h't. According to Saffnian, it should be constant, but in fact the 
vortices move towards each other, the greatest decrease being less than 10 yo for 
the calculation with p = 10-4m-1. This can be interpreted as the effect of the 
vorticity of opposite sign, which is generated on C and which concentrates on the 
upper half of C at  the larger times. 

Figure 6 shows the upper half of C at  various times when /3 = 10-4m-1. This 
run was performed with M = 98 to  give good resolution of the shape. It was not 
possible to use the program to resolve the flow €or values o f t  larger than 4T0. 

The program was modified to  calculate the descent velocity of a vortex pair 
through an atmosphere of constant density different from that surrounding the 
vortex pair. The results obtained are compared with the motion predicted by 
Saffman in figure 7, the ratio of the two densities having the value 1.0022. 
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FIGURE 7 .  Comparison of the numerical results with the theoretical results of Saffman (1972) 
for U for a constant density ratio 1.0022 of the densities of the ambient fluid and the fluid 
inoving with the vortex pair. 

5. Discussion 
The numerical results agree closely with the motion predicted by Saffman 

(1972) for small times, as suggested by (4.1). Disintegration of an aircraft vortex 
trail in an unstratified atmosphere occurs at approximately 6.4 To (Bisgood, 
Maltby & Dee 1971). Therefore Saffman’s theory will adequately describe the 
effect of stratification if p < 2 x m-l and will be adequate for more than half 
the disintegration time even if p = 10-4 m-l. 

Crow’s theory was based on the neglect of the time derivative in the vorticity 
equation and the neglect of the effect on this equation of the deformation of C ,  
the boundary of the buoyant region. The vorticity equation is equivalent to 

aY a AP 
at ai P O  
-+- (q(Z)y) = -gsinO(Z). 

Here 1 is a curvilinear co-ordinat>e which describes the location on the interface C. 
y is the strength of the vortex sheet on C and is defined by 

y = +‘ {dn., 
- €  

where n is the normal to C, 5 is the vorticity and e is a small distance. 
(Ap/p,)g = c1 is constant in an atmosphere of constant density and (Ap/p,)g = c2t  
in a stratified atmosphere when t is small, c2 being a constant. If distortion of C is 
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neglected and the effect of the baroclinically generated vorticity on the velocity 
p(1) is neglected, p(Z) is given by the unstratified theory. 

These approximations enable the above equation to be solved using charac- 
teristics and this solution enables the accuracy of Crow's solution to be assessed. 
The solution found in this way is 

where 

and F is the inverse function of h: F is unique because h is monotone increasing. 
The origin of 1 is chosen such that - QL < I < 4L. 

For small t ,  (5.1) becomes 
c,t sin @ ( I ) ,  (APlPo) g = c1, 

Y (L t )  - ( &c2t2 sin O(Z), (Ap/po) g = tc,. 

Now sin B(E) = sin 8( - I )  and therefore the distribution of baroclinically generated 
vorticit,y is symmetric in I at small times and shows no tendency to accumulate 
a t  the rear. 

For large t ,  F(h(Z) - t )  - F (  - t )  except a t  Z = aL, where h(Z) becomes infinite. 
For Z $. frL, at large t ,  F(h(2) - t )  -+ - 4L and so 

where the bottom stagnation point is given by y = -a.  This is Crow's expression 
when tis  large. As Z-tQL, q(Z) - BZ, sinO(1) - BL-l and P(h(Z)-t) - Z-tp(Z). So 
for any time t and 4L-l 4 1,  

Y ( 4  - y[F(h(l)  - t)I - t ($L - o2 

y(Z,t) - @2(QL--Z), $L-l  -g 1. 

and therefore y(@, t )  = 0 when (Aplp,) g = cl. Similarly, for (Ap/po) g = c,t 

Thus it appears that Crow's solution is valid only for times 3- To, and then not 
at the rear stagnation point. 

Since y(0, t )  > 0 and y(QL, t )  = 0, a maximum value of y may be anticipated 
for a value of I > 0. For an atmosphere of constant density, further insight into 
the magnitude and location of the peak value of y may be gained. Inspection of 
(5.1) shows that a maximum value of y must occur for a value of I greater than 
P(4t).  Suppose that this maximum occurs when t = 7( t )  h(Z), so that 0 < 7 ( t )  < 2. 
Values of t in the above expression are considered for 1 - +L, when 

d l )  - (1/3/W0) (4L- 0, 
and therefore h(l) - ( - 2T0/1/3) log (IL-  I ) .  
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FIGURE 8. The vorticity distribution on Ccalculated numerically from the vorticity equation 
derived by Crow (1974) for an atmosphere of constant density. The non-dimensionalization 
of y is suggested by (5.1). ( a )  t = 2T0. ( b )  t = 6T,. 
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FIGURE 9. Coinparison between the results of the discrete vortex approximation (crosses) 
and those derived from Crow’s vorticity equation for the vorticity distribution on C at time 
l . lTo for an atmosphere of constant density. 
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A maximum value yaf of y then occurs when 

t = -7(t)-  0 log (iL-Z), 
4 3  

or $L-2 = exp[-t,/3/2T07(t)], 

and since - y[2i’(W) - 01 G 2% 

yAlf - ~ X P  [ t 4 3 / 2 ~ m i .  

Thus there is a sharp peak close to the rear stagnation point, as may be seen in 
figure 8. r(Z,t) was calculated numerically from (5.1) for several values o f t  for 
the constant-density case, and the results are displayed in figure 8. This enables 
a further check on the discrete vortex approximation program to be made because 
the above values of y for t = l.llTo, when C still has its original shape, can be 
compared with the corresponding values of y determined from the results of the 
discret,e vortex approximation. This comparison is shown in figure 9. 
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